
Beams-doc-1040

 1

Overview of Secure Controls Framework
Implementation
Version 2. June 22, 2004

A. D. Petrov, apetrov@fnal.gov

The Secure Controls Framework (SCF) was proposed in [1] as a way to improve
the communication between Java™ controls applications and server-side data
providers over RMI. This document gives an overview of the first productional
version of SCF released on June 21, 2004.

Architecture
SCF consists of:

1. Client tier, which initiates and maintains connections and provides a high-
level API for the user applications;

2. Data server, which accepts incoming connections, performs authentication
of the clients, distributes and handles data requests;

3. Set of reusable graphical components that can be used to create client-side
GUI;

4. Supplementary Kerberos module that provides user authentication based
on Kerberos V5 protocol.

Client and server parts communicate through Remote Method Invocation
protocol (RMI) over TCP/IP. On the transport level, Generic Security Service
(GSS) API with Kerberos V5 mechanism is used to provide per-message integrity
and (potentially) encryption.

Purpose
SCF provides two services:

1. Access to some common repositories: ACNET device database, parameter
page database, and Universal Repository of Serialized Objects. On the
client side, generic Java Naming & Directory API (JNDI) is used to get the
content;

2. Bridge to the Controls Data Acquisition System (DAQ). A custom set of
classes is used to define the data acquisition job and to hold the data.

SCF server has pluggable architecture and the number of services can be easily
extended. The naming service is also pluggable and allows deploying of
additional data providers.

Beams-doc-1040

 2

Security
The major reason of SCF development was to resolve security problems existed
in the current DAQ implementation in order to allow the clients to read and set
data from many locations. SCF provides the following features:

1. Kerberos V5 is used for the user authentication on the client side;

2. JGSS API is used to establish a common security context between the
client and the server;

3. Per-message security services are applied to the data traveling over the
established security context in both directions in order to provide data
integrity;

4. A decision whether the client is authorized to do some operation is made
on the server. The client is responsible only for establishing of GSS
context;

5. Each server-side service (exported remote interface) has its own fixed
TCP/IP port;

6. The client-side code has no direct connection to the database or other
critical resources;

7. All the SCF code that is taking care of security is based on a generic
implementation from the publicly released SDK. Our extensions and
changes are as minimal as possible;

8. All user logins are logged in the database.

Kerberos authentication is implemented in tools.kerberos.base.Krb5*
class. Prior running any SCF client application, the user must obtain valid
Kerberos ticket through some external utility, such as kinit or Leash32. The
special procedure for exempt users located in the Main Control Room is
described below. The Kerberos module can read the ticket from various types of
caches.

The common security context is established in
scf.remote.ClientContextImpl and scf.server.ClientDelegate
classes on the client and server sides, correspondingly. As a result, both hosts
obtain instances of GSSContext that are stored in
scf.remote.transport.SecurityController on each side along with the
remote port and internal context ID. SecurityController caches existing
contexts and provide them for other parts of the system.

* Common package prefix gov.fnal.controls is omitted.

Beams-doc-1040

 3

Per-message security is applied on the transport level. On both sides, RMI is
using special extensions of output and input steams that can encrypt and decrypt
the data with GSSContext’s wrap and unwrap methods. The output stream
breaks the outgoing plaintext to the pieces of an appropriate size, gets
GSSContext from the local SecurityController, wraps it (converts to a
cipertext), and creates a datagram that should be sent to the remote host. The
datagram is the combination of ciphertext, its size, and used context ID. On the
opposite side the input stream does the reverse: restores the datagram, gets local
GSSContext, and unwraps the data. The described mechanism is universal and
can work without GSSContext, sending the plaintext directly.

The purpose of SecurityController is to cache locally all known
GSSContexts and to associate them with the remote port, current thread
(temporarily), and with a context ID. Generally speaking, a connection can have:

• No contexts at all — this takes place on the early stage during establishing
of the context, and for exempt clients.

• One context —the regular way of communication.

• Two contexts — if the client was asked to re-authenticate, during
establishing of new context.

The purpose of context ID is to give the input stream a clue which context to use
for the particular datagram.

When the input stream successfully unwraps data, it temporarily associates the
acting GSSContext with the current thread. If on the RMI level this message
causes a method call, the executed code will be working in the same thread, so
the method handler can check SecurityController in order to find out who
is calling it. (The same mechanism is used in the generic implementation of
RemoteServer.getCurrentHost).

Each server-side service uses remote user name and (may be) node name to
properly authorize the clients. Naming providers store this data in the database.
DAQ bridge has its own complicated security mechanism.

The described model does not work for the clients located in the Main Control
Room that are not kerberized. To resolve this, a special group of exempt clients is
described in the database, along with their IP addresses. All those hosts are
supposed to be physically located in a trusted network, so their IPs can not be
forged. If SCF server receives check-in request from the exempt host, it skips the
explicit Kerberos authentication and defines the user name according to the host
address.

The general security policy is defined in scf.server.ZoneConfig class.
When a client is connected to the server, it is associated with a zone, according to

Beams-doc-1040

 4

its IP. Each zone has specific security policy attributes, such as allowing
authentication without Kerberos login and default login lifetime.

Below is the connection scenario:

1. The client sends a check-in request to the server.

2. The server defines the client’s IP zone. If logins without Kerberos are
allowed in this zone and the client address is registered in the exempt host
database, the server gets user name from there and notifies the client that
it is registered under this name. Otherwise:

3. The server asks the client to provide its credentials.

4. The client gets cached Kerberos ticket, creates the initial GSS context, and
sends corresponding token to the server.

5. The server accepts the token, creates and caches GSS context associated
with the client, and sends another token to the client.

6. The client accepts the token, and caches GSS context created on step 4.
Authentication is done.

7. The client starts sending service requests to the server.

Communication on steps 1–5 is not secure. Per-message security services are
applied after GSS contexts are cached on both sides. If the client is authenticated
without Kerberos, the communication is always insecure.

It is worth to say, that per-message security guarantees message integrity, but
does not necessarily mean encryption. Basically, GSSContext’s wrap method
adds a message integrity code (MIC) to the data, which is a sort of digital
signature. The actual encryption is optional and can be requested by the client
when it initiates the context.

Services
Naming service offers access to several repositories from the client side through
JNDI:

• Device database (JNDI root = device) — ACNET device data: name,
device index, properties, siblings, node name, and description. For each
property: property index, array size, FTD, default event. Read only.

• Parameter page database (JNDI root = page) — tree of VMS parameter
pages: page title, list of devices and text comments. Pages that are empty
in the generic database are writable (so, the user can re-define its title and
list of devices/comment). All others are read-only by default.

• Universal Repository of Serialized Objects (JNDI root = object) — allows
to store random Java objects in serialized form. Has read and write access.

Beams-doc-1040

 5

Objects retrieved from the device and parameter page databases can be directly
used to create the data acquisition job.

Bridge to DAQ allows starting DAQ jobs on the server and receiving callbacks on
the remote host. The definition of SCF job is the same as was used in DAQ
(source/disposition/item/event), but all objects are re-defined and simplified to
get rid of direct database access and to fit specific needs of client applications.
Currently supported items are:

• Data sources:
o AcceleratorSource

o ModelSource

o UserSettingSource

• Data disposition:
o AcceleratorDisposition

o ModelDisposition

o MonitorChangeDisposition

• Events:
o DefaultDataEvent

o OnceImmediateEvent

o KnobSettingEvent

In SCF, most of the listed items are just the placeholders mapped to
corresponding DAQ objects on the server.

SCF equivalent of DataItem is more complicated: it can be either a single device
with set of properties, or a composite device, which has a list of devices inside,
including other composite devices. Device properties also act as containers that
store values received from the data acquisition system.

Detailed description of DAQ bridge will be provided later in a separate user
guide.

Secure Controls Framework also has a library of reusable graphical components
for client application developers:

• Renderers that can format reading, setting, and status values in traditional
way;

• SCF connection dialog integrated in Application Framework;

• DeviceNameEditor, NamingCombo, and NamingTree to browse the
content of JNDI trees;

• JobDataLabel to show device readings and status;

Beams-doc-1040

 6

• JobDataSettingField to do device settings;

• JobDataTable — a reusable implementation of traditional parameter
page table.

Some components (JobDataLabel, JobDataSettingField, and
JobDataTable) can be directly used as SCF job items.

Current Status
Currently, SCF is in productional beta release; detailed user guide is under
development.

All parts of the projects can be found on Controls CVS or \\daesrv\java in three
packages:

• gov.fnal.controls.scf

• gov.fnal.controls.servers.scf

• gov.fnal.controls.tools.kerberos

On the client side, one should use two jars in the classpath: scf-client.jar
and krb5.jar (both can be found in \\daesrv\java\jars\split). No other libraries
are required. In order to run the client, the user should get Kerberos ticket
through kinit or Leash32 (both file cache and Windows memory cache are
supported). Support of other Kerberos tools (especially for Mac) will be
gradually provided.

SCF server is running on DPE08. At this time, the firewall does not pass SCF
traffic; that is why this server is only accessible from the Controls network. The
server status is available at http://dpe08.fnal.gov:3333.

So far, no serious or persistent errors were noticed on both server and client.

The reference implementation of SCF is Data Survey application, which is
another version of Java Parameter Page (almost full equivalent). It can be found
on W page of Application Index and started through Java Web Start.

Client code size estimate:

In general:

DAQ SCF Ratio

govcore.jar 4,971 K scf-client.jar 223 K

jconn2.jar 460 K krb5.jar 45 K

Total: 5,431 K Total: 268 K 5%

Beams-doc-1040

 7

Java Parameter Page vs. Data Survey:

Java Parameter Page Data Survey Ratio

jpp.jar 221 K survey.jar 60 K 27%

govcore.jar 4,971 K scf-client.jar 223 K

jconn2.jar 460 K krb5.jar 45 K
5%

framework.jar 365 K framework.jar 365 K

af-bunch.jar 826 K af-bunch.jar 826 K
100%

Total: 6,843 K Total: 1,519 K 22%

References
0. A. D. Petrov. Overview Of Secure Controls Framework Implementation.

Version 1. Beams-doc-1040v1.
http://beamdocs.fnal.gov/cgi-bin/public/DocDB/ShowDocument?docid=1040

1. A. D. Petrov. Proposals on a Secure RMI Connection for Client Applications.
Beams-doc-953.
http://beamdocs.fnal.gov/cgi-bin/public/DocDB/ShowDocument?docid=953

2. Java™ Authentication and Authorization Service (JAAS) Reference Guide.
http://java.sun.com/j2se/1.4.1/docs/guide/security/jaas/JAASRefGuide.html

3. M. Upadhyay, R. Marty. Single Sign-on Using Kerberos in Java. Sun
Microsystems, Inc.
http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/single-signon.html

4. L. Gong, G. Ellison, M. Dageforde. Inside Java™ 2 Platform Security, Second
Edition. Addison-Wesley ISBN 0-201-78791-1. p. 262.

5. Application Index web interface. http://www-bd.fnal.gov/appix

6. R. Lee. The JNDI Tutorial. http://java.sun.com/products/jndi/tutorial

